Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 5-O-(4-chlorobenzoyl)-2-deoxy-3-O-methylsulfonyl-*threo*-pentofuranoside

Hongshi Jiang,* Hui Li and Hong Sun

Department of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China Correspondence e-mail: jianghongshi555@126.com

Received 26 January 2010; accepted 24 February 2010

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.006 Å; R factor = 0.061; wR factor = 0.160; data-to-parameter ratio = 17.7.

In the chiral title compound, $C_{14}H_{17}CIO_7S$, an intermediate in the synthesis of the AIDS treatment drug zidovudine, the threose ring adopts an envelope configuration, with the O atom at the flap position.

Related literature

For general background to the title compound, see: Li & Yan (2009).

Experimental

Crystal data

C₁₄H₁₇ClO₇S $M_r = 364.79$ Orthorhombic, $P_{2_12_12_1}$ a = 5.3103 (11) Å b = 10.996 (2) Å c = 28.559 (6) Å

Data collection

Rigaku Saturn CCD diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) $T_{min} = 0.941, T_{max} = 0.992$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.160$ S = 0.963708 reflections 210 parameters H-atom parameters constrained $V = 1667.6 \text{ (6) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.39 \text{ mm}^{-1}$ T = 113 K $0.16 \times 0.04 \times 0.02 \text{ mm}$

10486 measured reflections 3708 independent reflections 2350 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.081$

 $\begin{array}{l} \Delta \rho_{max} = 0.39 \mbox{ e } \mbox{ \AA}^{-3} \\ \Delta \rho_{min} = -0.35 \mbox{ e } \mbox{ \AA}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1491 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } 0.14 \mbox{ (12)} \end{array}$

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2005).

We thank the College Research Program of Yuncheng University (2008112) for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5317).

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Li, J. L. & Yan, L. (2009). Chin. Patent No. 101376667
- Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, 0820 [doi:10.1107/S1600536810007087]

Methyl 5-O-(4-chlorobenzoyl)-2-deoxy-3-O-methylsulfonyl-threo-pentofuranoside

H. Jiang, H. Li and H. Sun

Comment

Zidovudine is a nucleoside analog reverse transcriptase inhibitor, a type of antiretroviral drug. It is the first drug approved for the treatment of AIDS and HIV infection. The structure of the title compound, (I), a key intermediate in the synthesis of zidovudine, is reported here. Single-crystal X-ray diffraction analysis reveals that the title compound crystallizes in the orthorhombic space group $P2_12_12_1$.

Experimental

A solution of methyl sulfonylchloride (21.7 g, 0.19 mol) in dichloromethane (50 ml) was added dropwise to a stirred mixture of methyl 5-*O*-*p*-chloro-benzoyl-2-deoxy-threo-pentofuranoside (45.9 g, 0.16 mol) in triethylamine (30.8 ml, 0.22 mol) at 273-278 K. After stirring for 1 h, ice water (200 ml) was added. After a further 1 h stirring, the organic layer was separated and washed sequentially with hydrochloric acid (5%, 200 ml), saturated aqueous sodium bicarbonate (200 ml) and brine solution (200 ml). The organic extracts were dried with sodium sulphate. The solvent was removed in vacuum and the crude residue purified by flash column chromatography on silica gel. Colourless prisms of (I) were obtained by slow vaporation of a solution in a mixture of ethylacetate and petroleum ether (1:4).

Refinement

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.95-1.00 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

Fig. 2. The crystal packing for (I).

Methyl 5-O-(4-chlorobenzoyl)-2-deoxy-3-O-methylsulfonyl- threo-pentofuranoside

Crystal data	
C ₁₄ H ₁₇ ClO ₇ S	F(000) = 760
$M_r = 364.79$	$D_{\rm x} = 1.453 \ {\rm Mg \ m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 3922 reflections
<i>a</i> = 5.3103 (11) Å	$\theta = 1.4 - 27.2^{\circ}$
b = 10.996 (2) Å	$\mu = 0.39 \text{ mm}^{-1}$
c = 28.559 (6) Å	T = 113 K
V = 1667.6 (6) Å ³	Prism, colorless
Z = 4	$0.16 \times 0.04 \times 0.02 \text{ mm}$

Data collection

3708 independent reflections
2350 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.081$
$\theta_{\text{max}} = 27.4^\circ, \ \theta_{\text{min}} = 1.4^\circ$
$h = -6 \rightarrow 6$
$k = -14 \rightarrow 12$
$l = -36 \rightarrow 36$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.061$	H-atom parameters constrained
$wR(F^2) = 0.160$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0761P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 0.96	$(\Delta/\sigma)_{\rm max} < 0.001$
3708 reflections	$\Delta \rho_{max} = 0.39 \text{ e } \text{\AA}^{-3}$
210 parameters	$\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$

0 restraints

Absolute structure: Flack (1983), 1491 Friedel pairs

Primary atom site location: structure-invariant direct Flack parameter: 0.14 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	1.4386 (2)	0.10450 (10)	0.24656 (4)	0.0343 (3)
Cl1	-0.0628 (2)	0.49619 (10)	0.49439 (4)	0.0422 (3)
01	1.5556 (6)	0.1924 (3)	0.27718 (10)	0.0405 (8)
O2	1.2922 (6)	0.1486 (3)	0.20756 (10)	0.0425 (8)
O3	1.2518 (5)	0.0213 (3)	0.27563 (10)	0.0354 (8)
O4	0.9138 (5)	-0.0285 (3)	0.35800 (10)	0.0344 (7)
05	1.0908 (6)	-0.1751 (3)	0.40778 (11)	0.0432 (8)
O6	0.8593 (6)	0.2219 (3)	0.37504 (10)	0.0372 (8)
O7	0.8825 (6)	0.4043 (3)	0.33985 (11)	0.0438 (8)
C1	1.6668 (9)	-0.0004 (4)	0.22686 (16)	0.0409 (11)
H1A	1.7917	0.0419	0.2076	0.061*
H1B	1.5848	-0.0639	0.2082	0.061*
H1C	1.7507	-0.0375	0.2539	0.061*
C2	1.3140 (8)	-0.0092 (4)	0.32470 (14)	0.0364 (11)
H2	1.4918	0.0121	0.3327	0.044*
C3	1.2591 (9)	-0.1449 (4)	0.33224 (17)	0.0442 (13)
H3A	1.2336	-0.1866	0.3019	0.053*
H3B	1.4002	-0.1846	0.3490	0.053*
C4	1.0188 (8)	-0.1493 (4)	0.36168 (15)	0.0369 (11)
H4	0.8989	-0.2119	0.3495	0.044*
C5	1.1255 (8)	0.0530 (4)	0.35708 (16)	0.0344 (10)
Н5	1.1994	0.0578	0.3892	0.041*
C6	0.8817 (12)	-0.1738 (5)	0.43964 (17)	0.0660 (18)
H6A	0.8109	-0.0916	0.4411	0.099*
H6B	0.9391	-0.1983	0.4709	0.099*
H6C	0.7524	-0.2306	0.4287	0.099*
C7	1.0480 (9)	0.1795 (4)	0.34171 (15)	0.0345 (10)
H7A	1.1953	0.2347	0.3417	0.041*
H7B	0.9765	0.1772	0.3097	0.041*
C8	0.7876 (9)	0.3383 (4)	0.36835 (15)	0.0333 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

C9	0.5748 (9)	0.3752 (4)	0.40003 (14)	0.0341 (10)
C10	0.4615 (9)	0.2920 (4)	0.43100 (14)	0.0347 (10)
H10	0.5206	0.2106	0.4324	0.042*
C11	0.2639 (9)	0.3286 (5)	0.45937 (15)	0.0398 (12)
H11	0.1832	0.2722	0.4796	0.048*
C12	0.1858 (9)	0.4488 (4)	0.45785 (15)	0.0349 (10)
C13	0.2946 (9)	0.5324 (5)	0.42730 (15)	0.0389 (11)
H13	0.2350	0.6138	0.4260	0.047*
C14	0.4913 (9)	0.4948 (4)	0.39879 (15)	0.0392 (11)
H14	0.5695	0.5514	0.3783	0.047*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0263 (5)	0.0336 (6)	0.0429 (6)	-0.0003 (5)	-0.0009 (5)	0.0002 (5)
Cl1	0.0340 (6)	0.0454 (7)	0.0473 (6)	0.0034 (6)	0.0002 (5)	-0.0041 (5)
01	0.0359 (17)	0.0371 (18)	0.0485 (18)	-0.0078 (16)	-0.0019 (16)	-0.0060 (15)
O2	0.0409 (19)	0.045 (2)	0.0421 (19)	-0.0024 (17)	-0.0071 (15)	0.0032 (15)
O3	0.0274 (17)	0.0376 (19)	0.0413 (17)	-0.0057 (14)	-0.0010 (13)	0.0050 (14)
O4	0.0238 (15)	0.0308 (17)	0.0485 (18)	-0.0014 (14)	-0.0039 (14)	0.0003 (13)
O5	0.0414 (19)	0.0372 (19)	0.0511 (19)	0.0062 (17)	0.0016 (16)	0.0043 (14)
O6	0.0388 (19)	0.0297 (17)	0.0431 (18)	0.0019 (14)	0.0032 (13)	-0.0001 (13)
07	0.0443 (19)	0.0324 (18)	0.055 (2)	0.0036 (16)	0.0098 (16)	0.0077 (15)
C1	0.034 (2)	0.043 (3)	0.046 (3)	0.009 (2)	0.003 (2)	-0.003 (2)
C2	0.023 (2)	0.052 (3)	0.035 (2)	0.005 (2)	-0.0005 (18)	0.007 (2)
C3	0.040 (3)	0.038 (3)	0.055 (3)	0.009 (2)	0.006 (2)	0.008 (2)
C4	0.033 (3)	0.029 (2)	0.048 (3)	0.006 (2)	-0.003 (2)	0.0000 (19)
C5	0.028 (2)	0.033 (2)	0.042 (3)	-0.0045 (19)	0.0035 (19)	0.0022 (19)
C6	0.077 (4)	0.062 (4)	0.059 (3)	0.029 (3)	0.031 (3)	0.015 (3)
C7	0.034 (2)	0.030 (2)	0.039 (2)	0.002 (2)	0.008 (2)	-0.0056 (18)
C8	0.033 (2)	0.033 (3)	0.033 (2)	0.002 (2)	-0.0060 (19)	0.0012 (19)
C9	0.034 (2)	0.030 (2)	0.038 (2)	0.003 (2)	-0.003 (2)	0.0003 (18)
C10	0.032 (2)	0.033 (2)	0.040 (2)	0.001 (2)	-0.003 (2)	0.0006 (19)
C11	0.034 (3)	0.040 (3)	0.045 (3)	-0.004 (2)	0.000 (2)	0.000 (2)
C12	0.032 (2)	0.036 (3)	0.036 (3)	0.003 (2)	-0.005 (2)	-0.0027 (19)
C13	0.036 (3)	0.039 (3)	0.042 (3)	0.007 (2)	0.000 (2)	-0.003 (2)
C14	0.043 (3)	0.030 (2)	0.044 (3)	-0.001 (2)	-0.004 (2)	0.004 (2)

Geometric parameters (Å, °)

S1—O2	1.442 (3)	С3—Н3В	0.9900
S1—O1	1.444 (3)	C4—H4	1.0000
S1—O3	1.585 (3)	С5—С7	1.516 (6)
S1—C1	1.765 (4)	С5—Н5	1.0000
Cl1—C12	1.761 (5)	С6—Н6А	0.9800
O3—C2	1.479 (5)	С6—Н6В	0.9800
O4—C5	1.438 (5)	С6—Н6С	0.9800
O4—C4	1.444 (5)	С7—Н7А	0.9900
O5—C4	1.400 (5)	С7—Н7В	0.9900

05-6	1 435 (6)	C8—C9	1 504 (6)
O6—C8	1.349 (5)	C9—C14	1.388 (6)
06-07	1 458 (5)	C9—C10	1 408 (6)
07—C8	1 201 (5)	C10-C11	1 386 (6)
С1—Н1А	0.9800	C10—H10	0.9500
C1—H1B	0.9800	C11—C12	1 386 (6)
C1—H1C	0.9800	C11—H11	0.9500
C_{2} C_{5}	1 524 (6)	C12—C13	1 393 (6)
$C_2 = C_3$	1 535 (6)	C13—C14	1 388 (6)
С2—Н2	1 0000	С13—Н13	0.9500
$C_3 - C_4$	1 529 (6)	C14—H14	0.9500
С3—НЗА	0.9900		0.9000
	110.22 (10)	04 05 115	100.0
02 = 51 = 01	118.33 (19)	04—C5—H5	108.9
02-51-03	105.14 (18)	C/C5H5	108.9
01 = S1 = 03	109.79 (18)	С2—С5—Н5	108.9
02—S1—C1	110.1 (2)	05—C6—H6A	109.5
01—S1—C1	109.6 (2)	O5—C6—H6B	109.5
O3—S1—C1	102.7 (2)	Н6А—С6—Н6В	109.5
C2—O3—S1	119.2 (3)	O5—C6—H6C	109.5
C5—O4—C4	105.8 (3)	H6A—C6—H6C	109.5
C4—O5—C6	112.5 (4)	H6B—C6—H6C	109.5
C8—O6—C7	113.9 (3)	O6—C7—C5	106.9 (3)
S1—C1—H1A	109.5	O6—C7—H7A	110.3
S1—C1—H1B	109.5	С5—С7—Н7А	110.3
H1A—C1—H1B	109.5	O6—C7—H7B	110.3
S1—C1—H1C	109.5	С5—С7—Н7В	110.3
H1A—C1—H1C	109.5	H7A—C7—H7B	108.6
H1B—C1—H1C	109.5	O7—C8—O6	123.5 (4)
O3—C2—C5	109.1 (3)	O7—C8—C9	124.0 (4)
O3—C2—C3	108.1 (4)	O6—C8—C9	112.5 (4)
C5—C2—C3	103.1 (3)	C14—C9—C10	119.7 (4)
O3—C2—H2	112.0	C14—C9—C8	118.7 (4)
С5—С2—Н2	112.0	C10—C9—C8	121.6 (4)
С3—С2—Н2	112.0	C11—C10—C9	120.2 (4)
C4—C3—C2	105.4 (4)	C11-C10-H10	119.9
С4—С3—НЗА	110.7	С9—С10—Н10	119.9
С2—С3—НЗА	110.7	C10-C11-C12	119.0 (4)
С4—С3—Н3В	110.7	C10-C11-H11	120.5
С2—С3—Н3В	110.7	C12-C11-H11	120.5
НЗА—СЗ—НЗВ	108.8	C11—C12—C13	121.6 (4)
O5—C4—O4	111.1 (3)	C11—C12—Cl1	119.2 (4)
O5—C4—C3	107.2 (4)	C13—C12—Cl1	119.1 (4)
O4—C4—C3	104.7 (4)	C14—C13—C12	118.9 (4)
O5—C4—H4	111.2	C14—C13—H13	120.5
O4—C4—H4	111.2	С12—С13—Н13	120.5
С3—С4—Н4	111.2	C13—C14—C9	120.5 (4)
O4—C5—C7	111.4 (4)	C13—C14—H14	119.8
O4—C5—C2	104.2 (3)	C9—C14—H14	119.8
C7—C5—C2	114.5 (4)		

supplementary materials

O2—S1—O3—C2	-162.0 (3)	C8—O6—C7—C5	174.5 (4)
O1—S1—O3—C2	-33.7 (3)	O4—C5—C7—O6	59.2 (4)
C1—S1—O3—C2	82.8 (3)	C2—C5—C7—O6	177.1 (3)
S1—O3—C2—C5	112.1 (3)	C7—O6—C8—O7	-5.1 (6)
S1—O3—C2—C3	-136.5 (3)	C7—O6—C8—C9	174.2 (3)
O3—C2—C3—C4	-106.4 (4)	O7—C8—C9—C14	-4.3 (7)
C5—C2—C3—C4	9.0 (4)	O6—C8—C9—C14	176.4 (4)
C6—O5—C4—O4	62.4 (5)	O7—C8—C9—C10	176.4 (5)
C6—O5—C4—C3	176.2 (4)	O6—C8—C9—C10	-2.9 (6)
C5—O4—C4—O5	79.2 (4)	C14—C9—C10—C11	1.4 (7)
C5—O4—C4—C3	-36.2 (4)	C8—C9—C10—C11	-179.3 (4)
C2—C3—C4—O5	-102.4 (4)	C9-C10-C11-C12	-2.1 (7)
C2—C3—C4—O4	15.6 (4)	C10-C11-C12-C13	2.4 (7)
C4—O4—C5—C7	166.4 (3)	C10-C11-C12-Cl1	-179.2 (3)
C4—O4—C5—C2	42.4 (4)	C11-C12-C13-C14	-2.0 (7)
O3—C2—C5—O4	84.0 (4)	Cl1—C12—C13—C14	179.6 (3)
C3—C2—C5—O4	-30.7 (4)	C12-C13-C14-C9	1.3 (6)
O3—C2—C5—C7	-37.9 (5)	C10-C9-C14-C13	-1.0 (6)
C3—C2—C5—C7	-152.6 (4)	C8—C9—C14—C13	179.7 (4)

Fig. 1

